
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ESTIMATING SOURCE TERM  
FOR GROUND-WATER CONTAMINATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by 
 

Michael LeFrancois 



 ii 

A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines 

in partial fulfillment of the requirements for the degree of Master of Science (Geological 

Engineering). 

 

Golden, Colorado 

Date: ____________________ 

 
 
 

Signed: ____________________ 
Michael LeFrancois 

 
 
 

 
 
 

Approved: ____________________ 
Dr. Eileen Poeter 

Thesis Advisor 
 
 
Golden, Colorado 
 
Date: ____________________ 
 

____________________ 
Dr. John Humphrey 

Acting Department Head 
Department of Geology and 

Geological Engineering 
 
 



 iii 

 

ABSTRACT 
 
 

 In this study, nonlinear regression has been used to estimate the time and magnitude of 

Trichloroethylene (TCE) that entered the ground-water system in the Bunker Hill 

Ground-Water Basin of San Bernardino County, California.  This study relies on 54 years 

of hydraulic head and stream flow observations and 24 years of contaminant 

concentrations throughout the aquifer.  Contaminant observations include censored data, 

i.e., measurements below the detection limit.  A new approach (the censored-residual 

approach) for using censored data is implemented, in which the detection limit is used as 

the observed value to calculate the residual (difference between observed and simulated 

values) when the simulated value exceeds the detection limit, and a residual of zero is 

used when the simulated value is below the detection limit.  A synthetic example 

demonstrates that the censored-residual approach produces better estimates of the source 

term, thus it is used to calibrate a model of a TCE plume in the Bunker Hill Basin.  

Alternative conceptual models are calibrated in order to evaluate uncertainty associated 

with the source term.  In conjunction, Akaike’s Information Criterion is used to calculate 

model weights and average the results.  Given the current conceptual model, the available 

data, and this limited analysis, we have not determined when the bulk of the mass 

reached the water table.  Future work, involving evaluation of alternative conceptual 

models and further analysis of the field data, is suggested to facilitate that determination. 
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CHAPTER 1: OVERVIEW 
 
 

Introduction 
 
 A plume of Trichloroethylene (TCE) exists in the Bunker Hill Ground-Water Basin.  

The basin covers an area of approximately 120 square miles and is located in San 

Bernardino County, about 60 miles northeast of Los Angeles, California (Figure 1.1).  

The specific conditions related to the magnitude and timing of TCE releases are unknown 

due to limited operational records, but its location is believed to be a former industrial 

facility (Figure 1.2).  Observations of water levels, stream-flow rates, and TCE 

concentrations in ground water are used to estimate the contaminant source term (mass 

and timing) with respect to its arrival at the water table.  The time of transport through the 

vadose zone must be subtracted from the time of arrival at the water table in order to 

estimate the time when contaminants are introduced at the ground surface. 

An existing flow model of the basin (Danskin, 2006) is modified to facilitate the 

contaminant transport modeling.  Data for calibration includes 54 years of water levels 

and stream flows, and 24 years of concentration measurements from ground-water 

monitoring by local and governmental agencies. 

 The goal of this project is to use the available data to estimate the time when TCE 

reached the ground water using nonlinear regression and model averaging.  Results of 

this research are presented in Chapters 4 and 5.  Chapter 2 describes the Bunker Hill



 2 

 
Figure 1.1: Geographic setting and generalized geology of the Bunker Hill Ground-Water Basin, from Danskin (2006). 
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Figure 1.2: Finite-Difference grid and assumed source of TCE (represented by the green 
rectangle). 
 
 
Ground-Water Basin, and Chapter 3 delineates the flow and transport model of the basin.  

Given that background, Chapter 4 describes the use of censored values fo r model 

calibration using both synthetic examples and the TCE plume in the Bunker Hill Basin.  

Chapter 5 details the results of regression and model averaging with various prescribed 

source functions to estimate the character of the source distribution for the TCE plume.  

The main findings are highlighted in Chapter 6. 

 Two issues related to estimating the contaminant source term are addressed in this 

work: 1) inclusion of observations that are below the detection limit of laboratory 
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analysis (these are also known as ‘censored’ data); and 2) evaluation of multiple 

conceptual models of the source.  To use censored data, we set residuals to zero if the 

simulated value is less than detection limit (indicating a perfect fit to the observation), 

otherwise we calculate the residual as the detection limit minus the simulated value.  

Biased results may occur because these observations can only produce zero or negative 

residuals, but this is tolerated in order to accommodate all the information in the 

parameter estimation process.  Provided a significant number of observations are above 

the detection limit, then the use of all the observations produces a more realistic 

representation of the system.  The second issue, consideration of multiple conceptual 

models of the source is important because generally, data describing the character of the 

source are not available, so the conceptual model of the source is uncertain.  The 

conceptual model will influence the mass and timing estimated when calibrating the 

advection-dispersion equation, therefore various conceptual models should be considered.  

Although a best- fit model can be identified, it may not be the best representation of the 

source given the sparse, uncertain observations and model.  Hence, multiple models need 

to be considered and their results should be averaged.  Previous work related to use of 

censored data and consideration of multiple models is discussed in the following section. 



5 

Previous Work 
 

Often, censored data are present in data collected during social sciences, economics, 

medical, and industrial research (Helsel, 2005).  Even though geohydrologists have been 

dealing with censored data for some time, their treatment in the calibration process has 

been less than satisfactory: ignoring the values; deleting them; making them null; or 

setting the values equal to some fraction of the detection limit (Helsel, 2005; Gilliom and 

Helsel, 1986).  For instance, Helsel (2005) states, “a common approach is to substitute 

one-half the detection limit.  However, this assumes a spike at one value for all 

nondetects, which is not a realistic assumption.  The method for determining the 

detection limit among laboratories, and using a value that depends on the detection limit 

introduces an artificial signal that reflects laboratory conditions rather than concentration 

patterns in the aquifer.” 

One of the most detailed investigations of censored data was completed by Gilliom 

and Helsel (1986).  They estimated the mean, standard deviation, median, and 

interquartile range for several assumptions regarding censored observations.  They make 

these estimates for several cases, making different assumptions about the censored 

values, namely that they: are zero; are equal to the detection limit; have a uniform 

distribution between zero and the detection limit; have a distribution represented by the 

portion of a normal distribution between zero and the detection limit; or have a 

distribution represented by the portion of a lognormal distribution between zero and the 
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detection limit.  They concluded that, for the purpose of estimated population statistics, 

the best approach is assuming censored observations follow the zero to detection- limit 

portion of a lognormal distribution.  Further applications using censored data are 

discussed in Helsel (2005), which describes methodologies designed to analyze censored 

data. 

 The second issue addressed in this work regards evaluation of alternative conceptual 

models when estimating the source term.  For the past 15 years various mathematical 

applications have been developed to evaluate the advective-dispersive equation in an 

inverse sense in order to gain insight into the history of contaminant release (Atmadja et 

al., 2001).  One of the original studies used least-squares regression and linear 

programming (Gorelick et al., 1983) to estimate the source term.  Wagner and Gorelick 

(1986) expanded that work.  Other work coupled parameter estimation and contaminant 

source characterization (Wagner, 1992; Medina and Carrera, 1996).  Several advances 

were made with nonlinear optimization for identification of pollution sources (Mahar and 

Datta, 2000), nonlinear least squares (Alapati and Kabala, 2000), Gauss-Newton 

inversion (Essaid et al., 2003), Levenberg-Marquardt optimization (Sonnenborg et al., 

1996; Parker and Islam, 2000), and a simulation-regression management model involving 

three linked components: a flow and transport model combined with nonlinear 

regression; moment analysis ; and nonlinear stochastic optimization (Wagner and 

Gorelick, 1987).  Techniques for characterizing the source term incorporated Tikhonov 

regularization (Skaggs and Kabala, 1994; Liu and Ball, 1999; Neupauer et al., 2000), 
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quasi-reversibility (Skaggs and Kabala, 1995), Monte Carlo simulation (Skaggs and 

Kabala, 1998), and the backwards beam method (Atmadja and Bagtzoglou, 2001).  

Geostatistical approaches such as a Bayesian framework (Snodgrass and Kitanidis, 1997), 

and the adjoint method (Neupauer and Wilson, 1999, 2001, 2002, 2004; Michalak and 

Kitanidis, 2004) have also been used to determine the source term.  Recent developments 

include the constrained, robust, least-squares method (Sun et al., 2006). 

One of the first works to address conceptual model selection was Carrera and Neuman 

(1986) where they used information criteria to explore the estimation of aquifer 

parameters under transient and steady state conditions by revisiting the maximum 

likelihood method and incorporating prior information about model parameters.  They 

concluded that maximum likelihood theory lends itself to the definition of model 

identification criteria that may be useful for selecting the best model.  Later, Poeter and 

Anderson (2005) explained that the bias-corrected Akaike Information Criterion (AICc), 

which is rooted in the minimization of Kullback-Leibler mean information loss (a 

measure of the departure of the model from the true system), is the preferred criterion for 

weighting and averaging alternative models.  Anderson (2003) pointed out the forgotten 

second order variant of AIC termed AICc, which is used for smaller sample sizes typical 

in ground-water modeling.  Burnham and Anderson (2002) provide an in-depth 

discussion of model selection and multi-model analysis. 
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CHAPTER 2: DESCRIPTION OF THE BUNKER HILL GROUND-WATER 
BASIN 

 
 

The Bunker Hill Basin is geologically complex with respect to geomorphic changes 

over geologic time.  The basin boundaries are formed by regional-scale faults and 

topography such as the San Andreas Fault and the San Bernardino Mountains along the 

northern boundary, and the San Jacinto Fault along the southern boundary.  Both the San 

Andreas and the San Jacinto Faults have been fairly well characterized (Dutcher and 

Garrett, 1963; Danskin, 2006).  The Banning and Crafton Faults, as well as the Badlands 

and Crafton Hills form the southeastern boundary.  The western boundary of the basin is 

delineated by the San Gabriel Mountains and the Loma Linda Fault (Figure 1.1).  

“Current geologic understanding suggests that the Bunker Hill basin is a pull-apart basin, 

i.e., a tectonic strike-slip basin which developed over the last 1.7 million years in 

response to a right step between the San Jacinto and San Andreas Faults.” (SBVMWD, 

2004). 

The unconsolidated material that fills the basin includes river-channel deposits and 

alluvium, both of Holocene age, and older alluvium of Pleistocene age (Lowell et al., 

1988).  The alluvial material is water-bearing and consists of deposits of sand, gravel, and 

boulders interspersed with lenticular deposits of silt and clay, forming what is termed the 

“valley-fill aquifer.”  Previous investigations divided the valley-fill aquifer into six 
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hydrologic sub-units: 1) upper confining member; 2) upper water bearing member; 3) 

middle confining member; 4) middle water bearing; 5) lower confining member; and 6) 

lower water bearing (Dutcher and Garett, 1963).  However, Hardt and Hutchinson (1980) 

combined the six hydrogeologic units into a two layer hydrostratigraphic model for 

simplification purposes with thicknesses varying from approximately 120 to more than 

380 feet for each layer.  The two layer designation is the basis of the recent USGS flow 

model developed by Danskin (2006). 

Danskin (2006) suggests that, “Components of the water budget consist of natural and 

artificial recharge, ground-water inflow, ground-water pumping, return flow from 

pumping, evapotranspiration, and surface and subsurface outflow through the Colton-

Narrows, where the Santa Ana River crosses the San Jacinto Fault.”  The largest recharge 

to the basin occurs from infiltration of stream-flow runoff from the San Gabriel and San 

Bernardino Mountains, primarily via seepage through stream/river beds.  Specifically, 

three main tributary streams contribute more than 60 percent of the total recharge to the 

ground-water system: the Santa Ana River, Mill Creek, and Lytle Creek.  Lesser 

contributors include: Canyon Creek, Plunge Creek, and San Timoteo Creek.  Other 

sources of recharge include seepage of imported water from artificial basins, local runoff, 

return flow from groundwater flow from adjacent areas, and precipitation falling directly 

on the basin, which is assumed negligible due to the semiarid climate (Danskin, 2006).  

Recharge also occurs as groundwater flow across both the Crafton fault and the Badlands 

(Danskin, 2006; Lowell et al., 1988).  Sources of discharge are groundwater out flow, 
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evapotranspiration, and ground-water pumping (Danskin, 2006).  Groundwater outflow 

occurs across a designated ground-water barrier, Barrier E, where Lytle Creek emerges 

from the San Gabriel Mountains in the western section of the basin and at the Colton-

Narrows (Danskin, 2006).  Evapotranspiration occurs throughout the basin. 

Most ground water leaves the basin via pumping and evapotranspiration.  Of the 

remaining ground water, most exits at Colton-Narrows, which is also the surface water 

discharge location, while a lesser amount exits through Barrier E. 

 For further details, Danskin (2006), Dutcher and Garrett (1963), Hardt and Hutchinson 

(1980), and Lowell et al., (1988) provide descriptions of the physiography and hydrology 

of the basin. 
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CHAPTER 3: FLOW AND TRANSPORT MODEL DEVELOPMENT 
 
 

Flow Model 
 
 Danskin’s (2006) flow model of the Bunker Hill Basin is used as a basis for the work 

presented herein.  Danskin used MODFLOW-96 (Harbaugh et al., 1996).  However, 

Danskin modified the source code of MODFLOW-96 to represent site-specific boundary 

conditions of the Bunker Hill Basin which entailed adding specialized internal 

source/sink packages.  For ease of use, the Danskin model is updated to MODFLOW-

2000 (Harbaugh et al., 2000), and modified for analysis with automated regression. 

 Danskin’s conceptual model of ground-water flow in the valley-fill aquifer includes an 

upper unconfined model layer and a lower, confined model layer with transmissivities 

based on Hardt and Hutchinson (1980).  Hardt and Hutchinson (1980) estimated 

transmissivity using specific capacity tests performed by the California Department of 

Water Resources (Eckis, 1934).  These transmissivity values are converted to hydraulic 

conductivities by obtaining the elevation of the top and bottom of each layer and dividing 

the transmissivities by the layer thicknesses.  The derivation of layer elevations entailed 

digitizing elevation values for each grid cell of the respective model layer provided by 

figures in Appendix B of the draft EIR report (2004).  Specific yield values provided by 

Eckis (1934) for the top layer were digitized and interpolated to each cell location 

(Danskin, 2006).  Storativity for layer two is set at 0.0001 to represent a confined aquifer 



12 

(Danskin, 2006; EIR, 2004).  Vertical leakance between layers is based on estimates of 

Hardt and Hutchinson (1980).  The time period for flow simulation begins on January 1, 

1945 and continues for 60 years ending December 31, 2004.  Transient simulations in 

MODFLOW are divided into stress periods during which stresses, such as pumping and 

stream influx vary.  This model has 60 one-year long stress periods with each annual 

stress period subdivided into 10 time steps and a multiplier of 1.2.  The grid domain 

includes the entire basin with 184 columns in the x-direction and 118 rows in the y-

direction.  Cell dimensions are a uniform 820 feet (250 meters) in both the x and y 

directions, where each model cell covers about 15 acres of land (Figure 1.2).  The 

ground-water flow equation is solved using the Preconditioned Conjugate Gradient solver 

package, with convergence tolerance of 0.01 ft on heads and residuals, a maximum of 

2000 iterations, and a relaxation factor of 0.97. 
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Boundary Conditions of the Danskin Model 
 
 The hydrologic boundaries (Figure 3.1) for Danskin’s model are specified flux around 

the perimeter of the upper layer except at the convergence of all surface water features in 

the basin known as the Colton-Narrows located along the San Jacinto Fault, which is 

represented by a specialized head dependent flux.  Flow from Colton-Narrows uses 

simulated water levels at the Heap Well location to calculate discharge (Danskin 2006).  

The flux is zero along the remaining portions of the San Jacinto Fault completing the 

southern boundary of the upper layer.  The lower layer is surrounded by a no flow 

boundary except at specified flux boundaries in the northwest portion of the basin within 

the San Gabriel Mountains and upper Lytle Creek area, southern portions within the 

Badlands, and southeastern portions within the Crafton Hills area.  Specified flux 

boundaries represent ground-water inflow, faults are represented via horizontal flow 

barriers in MODFLOW, streams and rivers are represented with a head dependent flux 

boundary that allows stream stage to change in response to flow between the ground and 

surface water systems, and pumping is simulated as specified fluxes in the central 

locations of the basin. 
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Figure 3.1: Danksin boundary conditions a) the upper and b) lower (bottom) layers of the 
Bunker Hill ground-water flow model. 
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Modified Boundary Conditions 
 
 The boundary conditions (Figure 3.2) are unchanged in the modified model except for 

the outflow at Colton-Narrows, the inflow across the Crafton Fault (both were changed to 

a standard general head boundary), and flux added to the Zanja ditch (discussed later). 

 

Figure 3.2: Altered boundary conditions for the modified model: a) the upper and b) 
lower (bottom) layers of the Bunker Hill ground-water flow model. 
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The boundary conditions, recharge/discharge fluxes in the modified flow model, and 

associated MODFLOW packages are listed in Table 3.1. 

 
 
 
Table 3.1: Boundary conditions and associated MODFLOW packages. 
 
                   Recharge and Discharge Flux for the  Modified Model MODFLOW 

PACKAGE 
 

 

 

Recharge 

Gaged stream flow 

Recharge from ungaged mountain front runoff 

Infiltration from direct precipitation 

Recharge from local runoff 

Return flow from pumping 

Imported water (artificial recharge) 

Southeasten boundary inflow 

STR 

WEL 

RCH 

RCH 

WEL 

WEL 

GHB 

 

 

Discharge 

Ground-water pumping 

Evapotranspiration 

Gaged stream flow 

Groundwater flow 

Flow out of the Colton-Narrows 

WEL 

EVT 

STR 

WEL 

GHB 
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Transport Model 
 
 The modular three-dimensional transport and multi-species computer code MT3DMS 

(Zheng and Wang, 2005) is used to simulate TCE movement in the Bunker Hill Basin.  

The solute transport model requires the ground-water flux at each cell face so this 

information is saved for every stress period of the flow simulation.  Also, several values 

of chemical and physical parameters are needed to construct the transport model and are 

discussed below, including retardation (which depends on the sorption distribution 

coefficient of TCE), bulk density and effective porosity of the aquifer, as well as the 

longitudinal, transverse, and vertical dispersivities.  MT3DMS uses the same time 

discretization as the flow model to define the velocities.  However, MT3DMS 

automatically calculates smaller time steps for simulation of dispersion in order to 

maintain a stable, accurate solution. 

 
 

Physical and Chemical Properties 
 
 Retardation describes the velocity of a contaminant relative to ground water due to 

sorption of the contaminant to the aquifer matrix.  Assuming a linear equation for 

sorption, the retardation coefficient is calculated as: 

 

d
b

c

k
v
U
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where, U  is the ground-water flow velocity [L/t], cV  is the average velocity of a 

migrating contaminant [L/t], bρ  is the dry bulk density of the aquifer [M/L3], φ  is its 

effective porosity [-], dk  is the sorption distribution coefficient for the compound of 

interest (assumed to be linear for this project) [L3/M], ocf  is the fraction of organic 

carbon [-], and ock is the partition coefficient between the contaminant and the natural 

organic matter [L3/M].  For the sandy, loamy valley-fill aquifer a typical bulk density of 

1.77 kg/L is estimated based on values for similar materials in the literature (USDA, 

1996).  The effective porosity is assigned values of specific yield determined by Eckis 

(1934).  The fraction of organic carbon is site specific and is known to be small at this 

site (HSI, 1998; EIR, 2004), and retardation and distribution coefficient have not been 

measured.  Consequently, a value of retardation is chosen based on information provided 

by HSI (1998), EIR (2004), and Montgomery and Welkom (1990).  Parameter values are 

summarized (Table 3.2). 

 Longitudinal dispersivity is estimated by regression for each of the conceptual models 

describing the source functions discussed in Chapter 5.  Prior estimates of dispersivity 

range from 100 ft (HSI, 1998) to 300 ft (EIR, 2004).  Transverse dispersivity is set at 

one-third the value calculated for longitudinal and vertical dispersivity is one-hundredth 

of that value where both are based on field maps and cross-sections depicting the TCE 

contaminant plume. 
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Table 3.2: Summary of chemical and physical transport parameters, Note: 1USDA, 1996, 
2Montgomery and Welkom, 1990. 
 
Parameter Units Value 
1Bulk Density, bρ  [kg/L] 1.77 
 Sorption Distribution Coefficient, dk  [L/kg] 0.0214 
 Fraction Organic Carbon, ocf  [--] 0.0002 
2Distribution Coefficient, ock  [L/kg] 107 

 
 

Peclet Number 
 
 The transport model uses the same grid design as the flow model.  The Peclet number 

is the ratio of the cell length divided by dispersivity, and should be less than or equal to 2 

to keep numerical dispersion small (Zheng and Bennet, 2002).  The dispersivities 

estimated by regression for the alternative source functions are associated with Peclet 

numbers that are less than, equal to, or slightly larger than 2 (Chapter 5). 

 TCE contamination is simulated as a mass- loading using the source-sink mixing 

package of MT3DMS.  A computer program is developed to generate the source-sink 

mixing file for each conceptual source function and is discussed in the appendix with 

further information provided on the CD included with this report. 

 The advective portion of the transport equation is solved using the third-order total-

variation-diminishing (TVD) scheme, ULTIMATE.  According to Zheng and Wang 

(2005), “The ULTIMATE scheme is mass conservative, without excessive numerical 

dispersion, is essentially oscillation-free, and superior to other solution methods.”  The 
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Courant number, which limits the time step size to maintain the distance that a solute 

advects in one time step, is specified as 0.5.  This is generally required to be less than or 

equal to one to obtain an accurate solution (Zheng and Bennet, 2002).  The Generalized 

Conjugate Gradient Solver (GCG) is used with a concentration change criteria for closure 

set at 1x10-4. 
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Evaluation of Flow Model for Transport Modeling 
 
 Assuming reasonable values of transport parameters, the Danskin (2006) flow model 

simulated the contaminant plume south of the observed location of the plume in the field 

(Figure 3.3).  Proper simulation of the plume location cannot be achieved by adjusting 

transport parameters alone, because it requires adjustment of the flow direction. Thus, the 

Danskin flow model is recalibrated as discussed in the model calibration section of this 

chapter. 

 
 

 

 
Figure 3.3: The simulated TCE plume location from Danskin’s flow model is outlined in 
black.  The underlying pink shaded region outlines the location of measured 
concentrations greater than 5 Parts-Per Billion (ppb) (EIR, 2004). 
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Parameter Estimation 

UCODE_2005 Parameter Estimation Code 
 
 UCODE_2005 (Poeter et al., 2005) is used to perform inverse modeling by nonlinear 

regression with the purpose of estimating optimal values for selected parameters in order 

to minimize the squared weighted residuals between observations and simulated values.  

UCODE_2005 uses a modified Gauss-Newton approach to nonlinear regression with a 

weighted Least-Squares Objective Function (LSOF), (Hill, 1998): 

∑∑
==

−+−=
NPR

p
ppp

ND

i
iii bppbyybS

1

2'

1

2' )]([)]([)( ωω            (3.2) 

 

where: 

b   is a vector containing values of each of the NP parameters being estimated; 
ND  is the number of observations; 
NPR  is the number of prior information values; 
yi   is the ith observation being matched by the regression; 
yi

’(b)  is the simulated value which corresponds to the ith observation; 
pp   is the pth prior estimate included in the regression; 
pp

’(p)  is the pth simulated value ; 

iω   is the weight for the ith observation; 

pω   is the weight for the pth prior estimate. 
 
 
The differences )]([ ' byy ii −  and )]([ ' bpp pp −  are called residuals.  Weighted residuals 

are calculated as )]([ '2/1 byy iii −ω  and )]([ '2/1 bpp ppp −ω .  A more complete description 
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of regression with respect to UCODE_2005 is provided by Hill (1998), and (Hill and 

Tiedeman, in press for 2007). 

 During execution, UCODE_2005 substitutes parameters in model input files, runs the 

model, and extracts values from the output files to calculate simulated equivalents of the 

field observations.  Each parameter is perturbed to calculate the sensitivities where the 

sensitivities and residuals are used to update the parameter values via the modified 

Gauss-Newton method.  The solution is checked to determine if the problem has met the 

convergence criteria.  Finally, after the optimization is completed, statistics are calculated 

for use in diagnosing inadequate data and identifying parameters that probably cannot be 

estimated given the current model and available data, evaluating estimated parameter 

values, and assessing how well the model represents the simulated processes.  A 

flowchart representing the iterative process for UCODE is presented in Figure 3.4. 
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Figure 3.4: Flowchart describing major steps during the parameter estimation process in 
UCODE_2005, from Poeter et al., 2005. 
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Model Parameters 
 
 In order to improve the ground-water flow model calibration, the plume position in the 

north-south direction is included with head and stream flow observations.  The following 

parameters are estimated: multiplication factors on the hydraulic conductivities of the 

basin for both layers; a multiplication factor on the ungaged mountain front recharge 

from the San Bernardino Mountains in the upper northeastern portion of the model 

domain; and the southeastern boundary conductance controlling flow into the basin 

(Figure 3.5 and Table 3.3).  Also, an inflow of 10,000 ac-ft/yr (Danskin, personal 

communication, 2006) is diverted from the Zanja ditch to aid in the calibration process.  

All other parameters have the same values as in the Danskin model. 

 Alternative conceptual models of the source are considered for transport modeling.  

Parameters defining the source and dispersivity are estimated with regression (Table 3.3).  

Other transport parameters are assigned values as indicated in reports related to the basin 

(HSI, 1998; EIR, 2004).  These values should be reconsidered in future work. 
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Figure 3.5: Location of boundaries for recalibration.  Underlying image from Danskin, 
2006. 
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Table 3.3: Parameters estimated by regression for the flow and transport models.  Note 
Zanja is not an estimated parameter but is essential for explanation with respect to the 
modified model calibration process. 
 

PARAMETER DESCRIPTION RATIONALE 

HK Layer 1 Factor 
Multiplication factor 
adjusting the hydraulic 
conductivity of layer one 

Influences velocity in layer one 

HK Layer 2 Factor 
Multiplication factor 
adjusting the hydraulic 
conductivity of layer two 

Influences velocity in layer two 

Northeastern 
Ungaged 

Mountain Front 
Recharge Factor 

Multiplication factor 
manipulating the value of 
recharge that is not gaged 
flowing onto the north-
eastern surface of the 
basin 

Influences both flow rates in response 
to adding stream flow to the Zanja ditch 
and the north-south position of the 
simulated plume 

Zanja Stream 
Flow 

Value of the stream flow 
rate entering the upper 
portion of the Zanja 

Influences flow paths that control the 
north-south position of the simulated 
plume  

Southeastern 
Boundary 

Conductance 
Factor 

Conductance factor 
controlling flow through 
the southeastern 
boundary 

Influences residuals on the 
southeastern boundary which are large 
and the north-south position of the 
simulated plume  

    
Dispersivity Longitudinal dispersivity Value uncertain 

Source Timing Mass source timing 
Influences east-west position of the 
plume 

Mass 
Mass of contamination 
introduced into the aquifer 

Influences magnitude of concentrations 

Mean Time of 
Mass Input 

Mean of the statistical 
distribution 

Influences the peak of the normal and 
lognormal statistical distributions used 
to represent mass input to the ground-
water table 

Variance 
Variance of the statistical 
distribution 

Influences the shape of the normal and 
lognormal distributions to represent 
mass input to the ground-water table 
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Observations for Parameter Estimation 
 
 Transient hydraulic heads, flows, and the north-south position of the TCE plume 

comprise the observation data for the flow model calibration.  There are 15140 transient 

hydraulic head observations from 64 wells throughout the basin and 54 flow observations 

of differences in stream flow between gages from 1954 to 1998 as indicated in Table 1 of 

Danskin’s 2006 report (Figure 3.6).  There are 60 observations indicating the position of 

the plume is approximately 6 miles north of the southern border of the model domain and 

one observation indicating the final plume position at the end of the calibration period.  

Three-hundred six TCE concentration observations from 61 wells (Figure 3.6) over a 

twenty-four year period from 1980 to 2004 are used to calibrate the transport model. 

 

 

Figure 3.6: Observation locations for the flow model a) heads (black dots), inflow 
observations (red dots), outflow observations (yellow dots), final plume location (green 
triangle), and for the transport model b) wells (black dots) for concentrations. 
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 UCODE_2005 requires observations to be weighted so that: “(1) the weighted 

residuals are all in the same units so they can be squared and summed in the least-squares 

objective function, and (2) to reflect the relative accuracy of the measurements.” (Poeter, 

2005).  The weight on each observation is the inverse of the measurement variance.  The 

weight makes the weighted squared residuals unit- less and assigns high weights to more 

accurate observations.  Measurement variance is not provided in reports that list the 

observation data.  Thus, assumptions are made for each type of observation.  Initially, the 

following values are used to calculate variance for weighting: 1) hydraulic heads are 

assumed to be within +/-24.24 ft with 95% confidence, 2) stream flows and observed 

plume locations are assumed to be within +/-100% of measured values with a 95% 

confidence, and 3) 95% confidence intervals on concentrations are assumed to be  

+/-20% of the measured value for detected concentrations and +/-40% of the detection 

limit for censored values. 

 To confirm that the weighting is consistent with the model fit, the modeler strives for a 

(Calculated Error Variance) CEV with confidence intervals that include one.  “If the fit 

achieved by the regression is consistent with the data accuracy as reflected in the 

weighting, the expected value of the CEV is 1.0.” (Hill, 1998).  The CEV is a statistic 

used to reveal how well the simulated values match the observations relative to their 

assigned weighting and is calculated as: 
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NPND
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−

=
)(

           (3.3) 

where: 
ND  is the number of observations; 
NP  is the number of parameters; 
S(b)  see Equation 3.2. 
 
 Values of the CEV far from unity indicate that the model fit is inconsistent with the 

weighting.  Poeter and Hill (1997) summarize: “Values below one signify that the model 

fits the observations better than was indicated by the assigned weighting and values 

greater than one reflect that the model fit is not as good as indicated by the assigned 

weighting, which is due to expected measurement and model error typically represented 

in weighting.”  Significant deviations from unity are indicated if 1.0 falls outside the 

lower and upper 95% confidence intervals of the CEV. 

 The initial weights produced a CEV of 65.9 with intervals ranging from 64.5 to 67.5.  

These are adjusted (Table 3.4) to obtain a CEV closer to unity, thus the final weights are 

consistent with the quality of fit of the model. 
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Table 3.4: Summary of observations and weighting scheme.  Note: SD is standard 
deviation and CV is coefficient of variation.  Final values of the concentrations represent 
detected and censored observations, where the * applies to censored observations. 
 
     Observation 
           Type 

Number of 
Observations  

Weighting 
Scheme 

Final 
Value 

Hydraulic Heads (ft) 15140 SD 98.43 
Stream Flows (cfs) 54 CV 15252./(observed value) 
Plume Locations (ft) 61 CV 0.5 
Concentrations (ppb) 306 SD 32.67*, 16.33 

 
 
 Summary statistics with respect to concentration observations (Table 3.5) shows the 

percentages of observations that are either above or below detection limit.  Also the 

mean, median, and the maximum concentration are shown. 

 
Table 3.5: Summary statistics for the TCE concentration observations.  All values in ppb. 
 

% 
Detect 

% 
Censored 

Mean 25th 
percentile 

Median 75th 
percentile 

Maximum 
Concentration 

86 14 23.0 1.4 10.1 30.4 163.1 
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Comparison of Calibration Quality for the Danskin and Modified Models 
 

The only differences between Danskin’s and the modified model are that 10,000 ac-

ft/yr of flow is diverted from Mill Creek to the head of the Zanja ditch because this 

diversion is not included in Danskin’s model, but it occurs in the field.  Ten-thousand 

acre feet per year is used because it is the maximum flow that Danskin felt representative 

of the field conditions, (Danskin, personal communication, 2006).  The other difference is 

values of the parameters (Table 3.3) are adjusted to obtain a better fit to the observed 

values.  Each model is evaluated using the following criteria: 1) convergence to a 

reasonable tolerance where the change of parameter values is less than 1% between 

parameter estimation iterations ; 2) realistic optimized parameter values; 3) non-correlated 

optimized parameters; 4) acceptable model fit; and 5) randomly distributed residuals with 

respect to time, space, and simulated values. 

 Calibration results of the modified model show an optimal fit to the data is obtained 

with 1) the northeastern mountain front recharge approximately 5% of Danskin’s value, 

albeit with insensitivity causing removal of the parameter during the course of the 

regression; 2) the hydraulic conductivity multiplier of layers one and two a factor of 

2.166 and 0.693 of Danskin’s values, respectively, with insensitivity causing removal of 

the layer-one multiplier; and 3) the conductance of the southeastern boundary increased 

by a factor of 5.0, also with insensitivity removing this parameter during the course of the 

regression.  Final parameter values are listed in Table 3.6.  The Sum of Squared 
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Weighted Residuals (SOSWR) of the modified model is approximately one-half that of 

the Danskin model.  The CEV is below one for both models indicating that the model fit 

is better than anticipated given the weights assigned to the observations.  The lower CEV 

for the modified model reflects the improved fit for the same observation weights.  

Statistics including the SOSWR, CEV, and the upper and lower 95% confidence intervals 

of the CEV are shown in Table 3.7. 

 
Table 3.6: Ratio of optimized parameter values for the modified flow model to those of 
Danskin’s model. 
 
  

  

Hydraulic K 
Factor Layer 

One 

Hydraulic K 
Factor Layer 

Two 

Northeastern 
Mountain Front 

Recharge Factor 

Southern Boundary 
Conductance Factor 

Modified 
Model 

2.166 0.6933 0.0454 5.0 

 
 
Table 3.7: Comparison of the SOSWR and the CEV for the Danskin and modified flow 
models. 
 

  
SOSWR 

CEV 
Lower 95%  

Interval 
CEV 

CEV 
Upper 95%  

Interval 
Danskin Model 12217 0.78 0.80 0.82 
Modified Model 6563 0.51 0.52 0.53 

 
 

Graphical measures of model error and the quality of calibration can be evaluated 

using several graphs.  For example, weighted residuals versus simulated equivalents may 

identify model bias.  An unbiased model has a uniform distribution of the residuals 

around zero with roughly equal number of positive and negative residuals, thus the graph 
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should have a slope and y- intercept of zero, with an R2 near zero.  The differences 

between models are subtle, but indicate a slightly better calibration for the modified 

model in that the modified model is closer to zero than the Danskin model for all of those 

measures (Figure 3.7).  A graph of weighted observed values versus weighted simulated 

equivalents also evaluates model bias.  For an unbiased model, this graph would have a 

slope of one and y intercept of zero, with an R2 near one.  In this case the graphs show 

similar trends, however, the modified model has a more desirable intercept and R2 

(Figure 3.8). 
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Figure 3.7: Weighted residuals versus simulated equivalents for the Danskin and 
modified flow model. 
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Figure 3.8: Weighted observed values versus weighted simulated values for the Danskin 
and modified flow model. 
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Weighted residuals versus standard normal statistics should form a straight line on a 

normal probability graph.  If the weighted residuals form a straight line on the normal 

probability graph, it is likely that they are independent and normally distributed.  The 

graphs of both the Danskin and modified models exhibit nonlinearity (Figure 3.9).  

Deviation from linearity indicates a greater probability that the weighted residuals cannot 

be considered as random and normally distributed.  Hence, this requires the weighted-

residual test to be conducted which entails generating and plotting randomly generated 

independent normally distributed and correlated normally distributed numbers to evaluate 

the source of the deviation.  If similar deviations are apparent for the independent values 

then the nonlinear shape of the weighted residuals could be the result of too few 

observations for computing residuals.  If similar deviations between the weighted 

residuals and the independent normally distributed numbers are not apparent, then the 

trend between weighted residuals and correlated normally distributed numbers should be 

considered.  If the weighted residuals show trends similar to the correlated deviates, then 

the nonlinear shape is likely a result of regression- induced correlation.  However, if the 

graph exhibits dissimilar deviations then the nonlinearity is likely a result of an incorrect 

conceptual model or bias in the observation data.  The weighted residual tests for the 

Danskin model suggests that the conceptual model may be incorrect or the data may be 

biased since both independent and correlated normally distributed numbers exhibit 

dissimilar deviations from the weighted residuals.  With respect to the modified model, 

the trend of the weighted residuals is more similar to the random independent and 



38 

correlated deviates, particularly in the central portion of the distribution, suggesting the 

conceptual model has been improved although there may be room for further 

improvement (Figure 3.9). 

 Mapping weighted and un-weighted residuals in space and graphing them in time 

provides insight into spatial and temporal bias.  If there is no spatial bias, the map of 

residuals will exhibit a random pattern of positive and negative values, as well as large 

and small residuals.  Positive residuals are more uniformly spread throughout the basin in 

the modified model as compared with the Danskin model (Figure 3.10).  The residuals 

through time should exhibit a narrow horizontal band centered about zero. The modified 

model exhibits a trend with a slope and intercept slightly closer to zero, albeit with a 

slightly smaller R2 value, indicating less temporal bias than the Danskin model  

(Figure 3.11). 

In conjunction with the residual analysis graphs, the observed values of basin inflow 

minus outflow are compared with the simulated inflow minus outflow values for both the 

Danskin and modified models.  Finally, the location of the simulated plume (using initial 

estimates of transport parameters and source character) is also examined.  The modified 

model provides a better fit to the difference in flow observations (Figure 3.12).  

Moreover, the location of the plume simulated by the modified model is closer to the 

observed location of the plume in the field (Figure 3.13). 
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Figure 3.9: Normal probability graph showing trend of weighted residuals, uncorrelated 
and correlated deviates for the Danskin and modified flow model. 
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Figure 3.10: Spatial distribution of residuals for all times, a) Danskin model, b) modified 
model.  Red circles represent positive residuals and white negative. 
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Figure 3.11: Temporal residuals for the Danskin and modified flow models. 



42 

Bunker Hill Basin   Inflow-Outflow

-50000

50000

150000

250000

350000

450000

550000

650000

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

YEAR

IN
-O

U
T,

 A
c-

ft
/y

r

Observed Inflow-Outflow
Modified Model
Danskin Model

 

Figure 3.12: Observed surface water inflow minus outflow for field observations 
compared to the Danskin and modified flow models. 

 
Figure 3.13: Comparison of the spatial locations of the simulated TCE plume after flow 
calibration.  The unfilled outline is the 5ppb contour using Danskin’s flow model and 
initial estimates of transport parameters. The cross-hatched plume is the 5ppb contour 
simulated using the modified flow model.  The pink shaded area is the 5ppb contour of 
measured concentrations from EIR, 2004. 
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Verifying Unique Optimal Parameter Values 
 
 The combinations of parameter values that yield the lowest SOSWR are considered 

the optimal parameter values.  To confirm uniqueness of the optimized values (Table 3.5) 

it is good practice to repeat parameter estimation with different starting parameter values 

confirming that similar optimized values are obtained.  This is accomplished by starting 

regressions at either the upper or lower confidence intervals reported by UCODE_2005, 

or different parameter combinations of the values at those limits.  If the resultant values 

are within one standard deviation of the prior estimates, it can be assumed that the 

optimal values are unique. 

 For this project, parameter uniqueness is evaluated using three regression runs with 

different starting parameter values.  The results of the regressions reveal the final 

parameters are close estimates of each other, but various parameter values showed 

insensitivity during regression and hence, were removed from the estimated set.  The 

starting parameter values for each regression, final estimated values, and the SOSWR 

with respect to each set of optimal parameters are listed in Table 3.8.  Non-uniqueness 

occurred for both the multiplication factors on the hydraulic conductivity of layers one 

and two (Figure 3.14).  However, the northeastern mountain front recharge factor and the 

southeastern boundary conductance factor both are unique (Figure 3.15).  Results of the 

uniqueness test depict the final optimal parameter values for each run with the upper and 

lower 95% linear confidence interval.  To define the solution as unique, we expect the 
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estimated values to fall within half of a 95% confidence range of the parameter set with 

the lowest SOSWR.  It is important to note that the illustrated intervals are calculated 

assuming linearity. 

 Nonlinear intervals may reveal that the solution is more unique than concluded by this 

evaluation.  The large confidence intervals on the mountain front recharge and the 

boundary conductance are due to small sensitivities to the observation data which can be 

improved by collecting more data or reposing the problem.  Regardless, the final 

estimates are similar for each regression, so it is suggested that nonlinear confidence 

intervals be calculated in the future, and uniqueness be re-evaluated, but this is beyond 

the scope of this work. 

 The improved fit and more desirable distribution of residuals in the modified model 

with the lowest value of SOSWR indicates that it is more representative of the ground-

water flow system in Bunker Hill Basin than the original Danskin model.  Hence, the 

modified model is used for evaluation of the source function in the remainder of this 

report. 
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Table 3.8: Initial and final parameter values for three regressions.  Note that shaded cells 
indicate the final estimated value before the parameter was omitted from the regression 
due to insensitivity. 
 

Parameters 
Initial Values 

Run 1 Final 
Initial Values 

Run 2 Final 
Initial Values 

Run 3 Final 

K Factor Layer 
One 

2.17 2.16 2.50 2.51 3.0 2.3 

K Factor Layer 
Two 0.68 0.69 1.00 1.00 0.10 0.51 

Mountain Front 
Recharge Factor 0.091 0.045 1.50 1.51 0.50 0.59 

Boundary 
Conductance 

Factor 
5.0 5.0 10.0 10.0 10.0 10.0 

SOSWR   6563   9367   10122 
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Figure 3.14: Optimal parameter values and their upper and lower 95% confidence 
intervals for three regression runs.  Diamonds are the optimal values and error bars 
represent the upper and lower linear 95% confidence intervals.  Ideally all points should 
fall within the adjacent point’s error bars. 
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Figure 3.15: Optimal parameter values and their upper and lower 95% confidence 
intervals for three regression runs.  Diamonds are the optimal values and error bars 
represent the upper and lower linear 95% confidence intervals.  Ideally all points should 
fall within the adjacent point’s error bars. 
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CHAPTER 4: USE OF OBSERVATIONS BELOW DETECTION LIMIT FOR 
MODEL CALIBRATION 

 
 

Censored data is traditionally assessed using four substitution methods such that the 

values are replaced with: 1) the value of the detection limit; 2) one-half the detection 

limit; 3) zero; or 4) nothing in that they are not used in the regression.  Assuming that we 

analyze nondetect data in a manner reflecting we know only that the value is below the 

detection limit, i.e., the censored-residual approach, a more realistic representation of the 

system should be realized.  This chapter explores three cases to evaluate the censored-

residual approach and compares the results with the four alternative approaches.  The 

three cases are: 1) a synthetic homogeneous source and aquifer; 2) a synthetic 

heterogeneous source and aquifer; and 3) a site where TCE is migrating in the Bunker 

Hill Ground-Water Basin. 

 

Synthetic Cases 
 

The first synthetic case is a homogeneous aquifer with a constant mass input to the 

aquifer for a period of 10 days.  The second case is a heterogeneous aquifer with variable 

mass input to the aquifer spanning a period of 10 days.  Both synthetic cases assume the 

contamination is uniformly distributed vertically throughout a 9 meter thick aquifer 

represented by a finite-difference, block-centered grid using MODFLOW-2000 

(Harbaugh et al., 2000).  The grid domain is 100 columns in the x-direction and 50 rows 
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in the y-direction with uniform cell dimensions of 3 by 3 meters comprising a model 

domain of 300 meters by 150 meters (Figure 4.1).  The boundary conditions include no-

flow boundaries on the north and south sides of the model grid and constant head 

boundaries on the east and west producing a ground-water flow gradient of 1.0 

meter/meter from west to east.  The potential for a line-source of recharge is included in 

the conceptual model and recharge is applied at the start of the regression, but the ‘true’ 

rate of recharge is zero in the synthetic models. 

 
 

 

Figure 4.1: Model grid and boundaries for the synthetic cases showing the hydraulic 
conductivity distribution for the heterogeneous case.  Individual hydraulic conductivity 
values in ft/day such that red represents 25, yellow 20, green 15, aqua 10, light blue 5, 
and dark blue 3. 
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 Transport modeling is accomplished using MT3DMS (Zheng and Wang, 2005) with 

the same boundaries and spatial discretization as the flow model.  Retardation is zero, 

longitudinal dispersivity is 3 meters, and transverse dispersivity is 0.15 meter.  

Observation locations are delineated throughout the aquifer as indicated by dots in Figure 

4.2.  Observations are taken from the “true” synthetic model with a detection limit 

defined as 5 mg/L.  Concentrations (after ten days of transport) simulated using “true” 

model parameter values and plumes generated using the parameter values defined at the 

start of the regression are shown for both the homogeneous and heterogeneous cases 

(Figure 4.2).  The estimated parameters include longitudinal dispersivity, recharge along 

the line source, and porosity. 

 

Figure 4.2: Concentrations after 10 days of transport as simulated using the true 
parameter values and the values at the start of the regression.  A) true plume 
configuration in homogeneous aquifer; B) starting plume in homogeneous aquifer; C) 
true plume in heterogeneous aquifer; D) starting plume in heterogeneous aquifer. 
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Synthetic Case Results 
 
 In general, the censored-residual approach produces better calibration statistics and 

more accurate parameter values than substitution methods.  Calculated residuals are much 

smaller when the censored-residual approach is used.  For instance, the regression quality 

plot depicting weighted residuals versus simulated values forms a narrower band around 

zero as compared with the approach where the detection limit is used for censored 

observations (Figure 4.3).  Similar results are found for the other alternative methods, but 

these are not shown. 
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Figure 4.3: Weighted residuals versus simulated values for the synthetic cases with 
respect to treatment of censored values. 
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 Parameter estimation converges for all the homogeneous cases.  The censored-residual 

approach produces the best statistics and most accurate parameters, followed by the case 

for which censored values are completely omitted from the regression.  Substitution of 

zero for the censored values delivers smaller values of longitudinal dispersivity and 

concentration than the true values, as would be expected if the observed plume is 

confined to the zone where detections are noted.  Unreasonably large longitudinal 

dispersivities are estimated when one-half the detection limit is substituted for the 

observation, or the detection limit is substituted for the observation, as would be expected 

if higher concentrations are observed at the location of the censored values. 

Parameter estimation also converged for each heterogeneous simulation.  Again, the 

best results are obtained when invoking the censored-residual approach.  The next best 

results are obtained by removing censored values from the regression.  Use of zero for the 

censored data again results in estimation of smaller longitudinal dispersivity and 

concentration values than the true values in the synthetic model, and large longitudinal 

dispersivities are estimated when the censored values are assigned one-half the detection 

limit, or the detection limit.  The final parameter values, Standard Error of the Regression 

(SEOR), SOSWR, and the true parameter values of the synthetic case are listed  

(Table 4.1). 
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Table 4.1: Final optimized parameter values and calibration statistics for the synthetic cases. 
 

 

 

 

 

 

 

 

 

CASE 
Longitudinal 
Dispersivity 

Porosity C1 C2 Recharge SOSWR SEOR 

Homogeneous – TRUE 10 0.3 500   0     

censored-residual approach 10 0.300 502   9.1x10-7 85.8 0.48 
censored values removed 10 0.300 503   1.7x10-5 130.2 0.83 
censored values at zero 7.7 0.302 468   6.4x10-5 333.0 0.95 
censored values at detection limit 2142 0.310 1345   2.3x10-5 1733.0 2.1 
censored values 1/2 the detection limit 2229 0.304 610   3.9x10-5 2522.9 2.6 

Heterogeneous – TRUE 10 0.3 2000 500 0     

censored-residual approach 10 0.300 2008 504 1.5x10-4 81.5 0.47 
censored values removed 10 0.300 2008 504 1.6x10-4 81.5 0.70 
censored values at zero 7.6 0.301 1851 449 1.6x10-4 351.1 1.0 
censored values at detection limit 32 0.323 2126 512 1.4x10-4 3563.8 3.1 
censored values 1/2 the detection limit 12 0.305 1769 417 1.5x10-4 3816.1 3.2 
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Results show the superiority of some substitution methods relative to others, but all 

are inferior to removing the censored values, or using the censored-residual approach.  

Removing the censored data provides accurate estimates for these cases because the 

remaining data fully capture the character of the plume.  When the substitution methods 

are invoked, the regression uses concentrations equal to the substituted values, giving the 

same value of concentration to all censored data.  This is not a realistic assumption.  The 

zero substitution method is better than the one-half or detection limit substitution for 

these cases because the concentrations at the censored locations are closer to zero than to 

the other substituted values. 

Given that the results are so similar, one might ask why it is concluded the censored-

residual approach is best?  The censored-residual approach is most advantageous because 

it allows all the data to be included, and in some cases including all the available data will 

better define the plume.  Figure 4.4 delineates a situation where that is the case, and is a 

situation to be tested in future experiments. 
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Figure 4.4: One scenario in which including censored-data rather then removing data 
distinguishes the field situation.  X’s represent detect data and O’s represent censored 
data. 
 
 
The plumes simulated by the calibrated models after ten days of transport closely 

resemble the true plume for the synthetic tests, except for the homogeneous and 

heterogeneous cases when the censored values are at their detection limit, and for the 

homogeneous case when the censored values are replaced by one-half the detection limit.  

The best SOSWR and residual graphs are obtained for the censored-residual approach 

followed by the approach in which censored values are completely removed from the 

regression.  Use of zero for censored data is better than substituting the detection limit 

and the least impressive results are generated by substituting one-half the detection limit.  

The relative ranking of alternative substitution approaches depends on the character of 
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the actual values, whereas the censored-residual approach does not purport any 

knowledge about censored values beyond the fact that they are below detection limit. 

The simulated plumes after ten days of transport (using the estimated parameter 

values) for the synthetic cases are depicted in Figure 4.5.  In the homogeneous case when 

the detection limit or one-half the detection limit are substituted for censored values, the 

SOSWR surface is flat (the solution is non-unique) so the estimates are not reliable. 

However, as is expected if the plume is widespread (i.e., if these values were large as 

indicated by substituting values above the true values), the dispersivity estimate is large, 

which leads to the same value of concentration throughout the model domain, thus no 

contours are depicted for Figures 4.5D and 4.5E. 
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Figure 4.5: Calibrated plumes after 10 days of transport all contoured at 5 mg/L 
intervals.  A) censored-residual approach; B) censored values removed; C) censored 
values replaced with 0; D) censored values replaced with detection limit, E) censored 
values replaced with one-half the detection limit. 
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Field Application 
 
 The censored-residual approach is used to estimate the character of the source for the 

TCE plume in the Bunker Hill Basin.  All parameters mentioned in the results of  

Table 4.2 will be discussed in Chapter 5.  This example is included in this Chapter to 

provide a field example using the censored-residual approach. 

 
 

Results of Field Application 
 

The calibrated model of TCE migration in Bunker Hill Basin has smaller SOSWR and 

SEOR values when the censored-residual approach is used as compared with the 

substitution methods.  However, the substitution approaches do not attain the same 

relative rank of calibration statistics as found for the synthetic cases (Table 4.2).  That is, 

assigning zero to the censored values ranks higher than removing the censored values.  

As mentioned in the assessment of the synthetic cases, the relative ranking of alternative 

substitution approaches depends on the character of the actual values, whereas the 

censored-residual approach does not purport any knowledge about censored values 

beyond the fact that they are below detection limit.  Given that the synthetic problem 

yields more representative parameter values when the censored-residual approach is 

invoked, we conclude the estimated optimal parameter values using the censored-residual 

approach are more representative than those obtained using the other substitution 

methods. 
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Table 4.2: Final parameter values for the field application with respect to treatment of censored values. 

 
 

 
 
 
 
 
 
 
 
 

 
Longitudinal 
Dispersivity 

(ft) 

Source 
Timing 
(year) 

Mass 
(lbs) 

Mean 
Time of 
Release 
(year) 

Variance 
of 

Timing 
(year2) 

SOSWR 
Upper 
95% 

SEOR 
Lower 
95% 

censored-residual 327 28 19090 13 60 167 0.77 0.78 0.92 
replaced with 0 419 21 25840 29 60 170 0.77 0.79 0.92 

values removed 419 21 25840 29 60 170 0.79 0.86 0.94 

replaced with 0.5 509 22 25280 30 58 181 0.80 0.82 0.95 

at detection limit 512 22 25670 30 57 181 0.80 0.82 0.95 

60 
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CHAPTER 5: ESTIMATING CONTAMINANT SOURCE HISTORY USING 
NONLINEAR REGRESSION AND AVERAGING OF ALTERNATIVE 

CONCEPTUAL MODELS 
 
 
 Models cannot entirely represent all the subtleties of ground-water systems, as they are 

only mere approximations of nature.  For instance, reasonable alternative models of a 

system can yield similar calibrations and yet provide substantially different results 

(Hojberg and Refsgaard, 2005).  To explore this, we use various conceptual models to 

estimate source history and examine alternative source functions using both nonlinear 

regression and model averaging. 

 
 

Alternative Conceptual Models 
 
 Three important attributes distinguish sources of ground-water contamination: (1) their 

degree of localization, (2) their loading history, and (3) the type of contamination 

entering the system (Domenico and Schwartz, 1990).  The available concentration data 

make it impossible to estimate a unique mass for each year, so we evaluate functions that 

will distribute the mass in time using only a few parameters.  We consider four 

alternative source functions to represent TCE loading history, which are: an initial 

estimate of the possible mass distribution proposed by a stakeholder, a uniform 

distribution represented by a step function, a normalized truncated normal distribution 

and a normalized truncated lognormal function.  For each conceptual model a set of 
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parameters is estimated to obtain a simulation that best matches the observed 

concentration data (Table 5.1, Table 3.3).  Computer programs that print mass as a 

function of time using the estimated parameter values for each source conceptualization 

are described in the appendix and included on the CD distributed with this report. 

 
 
Table 5.1: Parameters of interest for alternative conceptual models.  The word underlined 
in this table is used to identify the parameter in the discussion. 
 

Stake Holder Step Function 
Modified Truncated 

Normal Function 
Modified Truncated 
Lognormal Function 

 
Longitudinal 
Dispersivity 

 

 
Longitudinal 
Dispersivity 

 
Longitudinal 
Dispersivity 

 
Longitudinal 
Dispersivity 

 
Source Timing 

Start of source in 
years after 1945 

 

 
Source Timing 
Start of source in 
years after 1945 

 
Source Timing 
Start of source in  
years after 1945 

 
Source Timing 
Start of source in 
 years after 1945 

 
Total Mass for 
Entire Period 

 

 
M1 Mass per 

year of pulse one 

 
Total Mass for  
Entire Period 

 
Total Mass for  
Entire Period 

   
M2 Mass per 

year of pulse two 

 
Mean Time of  

Mass Input  
After mass begins to 
reach the water table 

 

 
Mean Time of  

Mass Input  
After mass begins to 
reach the water table 

 
   

M3 Mass per 
year of pulse 

three 
 

 
Variance in Time of the 

Distribution of Mass 
Around the time of  
mean mass Input 

 

 
Variance in Time of the 

Distribution of Mass 
Around the time of  
mean mass input 
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Stake Holder Estimate of the Mass Distribution 
 
 A stake holder suggested relative amounts of mass for each year based on industrial 

activity at the proposed site.  To represent this as a distribution, the relative values of the 

mass are used in conjunction with a multiplier for adjusting and estimating the total mass 

entering the system.  If one assumes a source timing of 20 years and a mass of 29000 lbs, 

the resulting distribution is as shown (Figure 5.1). 
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Figure 5.1: Stake Holder mass distribution. 
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Step Function 
 
 The step function provides the ability to define three periods of differing source 

intensity.  Three pulses are chosen that coincide with periods of differing industrial 

production contracts for the source site.  The step function is created such that the starting 

time and mass are allowed to vary, but the duration of each period is fixed.  Hence, the 

distribution is shown for a start time of 1955.  The first pulse occurs for 13 years, the 

second for 3 years, and the third pulse for 5 years (Figure 5.2). 
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Figure 5.2: Mass distribution represented by the step function. 
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Truncated Normal Distribution 
 
 A normal distribution is described as: 

)2/)(exp(
2

)( 22

2
σµ

πσ
−−= x

mass
xf            (5.1) 

 
where mass is the total mass of contaminant introduced at the water table, µ  is the mean 

time of mass input relative to the time that mass begins to reach the water table, and 2σ  

is the variance of the distribution of mass around the time of mean mass input.  For input 

to the transport model, the function is truncated to constrain the period of mass input to 

20 years (the duration of industrial activity) so resultant mass distribution is found by 

normalizing the 20 year portion of the distribution with respect to the maximum value in 

those years and multiplying by the total mass (see Appendix B for more detail).  This 

function represents a ramping up and down of mass over time.  Changes in the mean time 

of release and variance result in various distributions, such that more mass may enter the 

system early, late, or in the middle, of the period of industrial activity.  Assuming a total 

mass of 30000 lbs, Figure 5.3 illustrates the flexibility of the function to provide different 

input distributions. 
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Figure 5.3: Truncated normal distributions represented by mean and variance 
combinations. 
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Truncated Lognormal Distribution 
 
 A lognormal distribution is described as: 

)2/))(ln(exp(
2

)( 22

2
σµ

πσ
−−= x

x

mass
xf            (5.2) 

 
where mass is the total mass of contaminant introduced at the water table, µ  is the mean 

time of mass input relative to the time that mass begins to reach the water table, and 2σ is 

the variance of the distribution of mass around the time of mean mass input.  For input to 

the transport model, the function is truncated to constrain the period of mass input to  

20 years (the duration of industrial activity) so resultant mass distribution is found by 

normalizing the 20 year portion of the distribution with respect to the maximum value in 

those years and multiplying by the total mass (see Appendix B for more detail). However, 

unlike the truncated normal distribution the truncated lognormal distribution allows for 

an early or late tail of mass input.  Changes in the mean and variance result in different 

distributions as shown in Figure 5.4. 
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Figure 5.4: Truncated lognormal distributions represented by various mean and variance 
combinations. 
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Results of Estimating Transport Parameters  for Alternative Conceptual Models 
 
 Before presenting the results, it is important to note that some constraints were applied 

to the regression work for this thesis.  Constraining a regression is not desirable if the 

optimized values are equal to a constraint.  This occurred in a few cases and is viewed as 

a shortcoming of this thesis that can be improved upon in future work.  One constraint of 

concern is the lower bound on the time after the start of the flow simulation that mass 

first reaches the water table. This constraint was set at 10 years (1955) because TCE was 

not used before that time. That is, the lower bound of “source timing” was set at 10 years 

and for one case this was the optimal value. The other constraint selected as an optimal 

value was the lower bound for longitudinal dispersivity. This was limited to 410 feet in 

order to maintain a Peclet number of 1.0 or less. A somewhat larger value, two or so, 

would be acceptable and in the future the regression should be repeated without this 

constraint. 

Regression statistics show the most representative source function is the normalized 

truncated lognormal function (Table 5.2).  However, some estimates reached bounds that 

should not have been included in the regression, or became insensitive during the 

regression and so were omitted from the estimation procedure and so should be viewed as 

specified rather than estimated parameters.  For instance, inversion results showed that 

the mean arrival time and variance of timing of the truncated lognormal function had no 

sensitivity at the end of the regression.  The source timing for both the stake holder and 
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the truncated normal functions showed insensitivity.  Finally, the estimates of the source 

timing for the step function occurred at the lower bounded value, in conjunction with 

both masses of pulse one and two showing no sensitivity.  Consequently, for further 

evaluation in this thesis these are treated as specified parameter values. 

 

Table 5.2: Regression statistics for each of the contaminant source functions. 
 

SOURCE FUNCTION SOSWR 
CEV 

Lower 
95% 

CEV 
CEV 

Upper 
95% 

   Truncated Lognormal 167.3 0.5873 0.6105 0.8406 
   Stake Holder 178.2 0.6258 0.6481 0.8957 
   Truncated Normal 179.4 0.6299 0.6595 0.9015 
   Step Function 307.9 1.081 1.1238 1.5475 

 
 
 The mass and time coordinates of the centroid of the source distribution are calculated 

to provide a summary measure of the estimated distributions.  Examples are provided in 

Figure 5.5 to illustrate how calculation of the centroid depicts timing and magnitude of 

mass entering the ground water system.  Final parameter values and the time and mass 

coordinates of the source distribution for each conceptual model are presented in  

Table 5.3.  Note that for the step function the total mass is shown instead of the estimated 

mass for each pulse.  Given that in some cases parameters were omitted from the 

regression, those values are treated as if they had been specified rather than estimated. 

 



 71 

 
Figure 5.5: Example showing how the mass and time coordinates of the centroid of mass 
reaching the ground water table summarizes the character of the source distribution. 
 
 
Table 5.3: Optimized parameter values, and time and mass coordinates of the centroids 
for each optimized model.  Gray shaded cells represent parameters that were insensitive 
at the end of the regression.  Darker gray cells indicate parameters that reached a 
specified bound and so were not estimated. 
 

Source 
Function 

Dispersivity 
(ft) 

Source 
Timing 
(years) 

Mass 
(lbs) 

Mean 
Time of 
Release 
(year) 

Variance 
of 

Timing 
(year2) 

Time 
Centroid 

(year) 

Mass 
Centroid 

(lbs) 

Lognormal 410 29 18200 3.2 55.4 1979 659 
Stake Holder 410 20 14860   1976 509 
Normal 459 17 14020 15.4 12.5 1975 604 
Step Function 479 10 5033   1972 438 

 
 

The normalized truncated lognormal model has the most representative regression 

statistics of the group depicted in each of the calibration quality graphics: 1) weighted 

residuals versus simulated equivalents (Figure 5.6); 2) weighted observed values versus 

weighted simulated equivalents (Figure 5.7); and 3) probability versus ordered weighted 

residuals (Figure 5.8).  None of the weighted residuals versus standard normal statistics 

form a straight line, so the comparison with uncorrelated and correlated random normal 
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deviates is completed for each.  Similar deviations from the weighted residuals are 

apparent for the independent (uncorrelated) and correlated random numbers with respect 

to the normalized truncated lognormal, normalized truncated normal, and stake holder 

functions, with the closest resemblance to the weighted residuals for the normalized 

truncated lognormal function.  The step function is least representative conceptual model.  

The pattern of positive and negative residuals is similar for the normalized truncated 

lognormal, normalized truncated normal, and stake holder conceptualizations with a 

combination of both positive and negative residuals in space.  However, the step function 

is again an exception with a biased distribution of positive residuals (Figure 5.9). 

 The plumes, as simulated with the optimal estimated parameters, are contoured for 

each conceptual model and compared with the 0.5ppb contour line of the observed field 

concentrations (Figure 5.10).  As can be seen, the plumes simulated using the normalized 

truncated lognormal, normalized truncated normal, and stake holder functions have the 

closest resemblance to the field plume, with the normalized truncated lognormal function 

giving the best representation.  Once again, the step function is the least representative of 

the group. 
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Figure 5.6: Weighted residuals versus simulated equivalents for the alternative models.  
A “perfect” fit would have y=0x+0, y=0. 
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Figure 5.7: Weighted observed values versus weighted simulated values for the 
alternative models.  A perfect model would have y=1x+0, y=x. 
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Figure 5.8: Normal probability graph showing trend of weighted residuals, uncorrelated 
and correlated deviates for the conceptual models.  A perfect model would have values 
matching the shape of the correlated residuals. 
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Figure 5.9: Spatial distribution of concentration residuals for all times for the conceptual models. 
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Figure 5.10: Contaminant plumes with respect to the final parameters for each of the conceptual models.  Underlying plume 
(gray) represents the 0.5ppb contour line of the observed concentration data. 

77 
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Verifying Unique Optimal Parameter Values 
 
 To confirm the uniqueness of optimized values for the normalized truncated lognormal 

function (Table 5.3) we use the methodology discussed in Chapter 4.  For this, testing the 

constraint on the lower bound of dispersivity was removed.  However, a constraint that 

did not affect results before, does affect these results.  The code that calculates the 

normalized truncated lognormal distribution will fail if the variance exceeds 60 years.2  

Sixty was specified as an upper bound and all of the regressions reached the upper bound. 

It is expected that this is compensating for the lower estimated value of dispersivity by 

spreading the course, suggesting we may not be able to independently estimate these 

values and this should be explored in future work.  

None of the regressions converged for the alternative starting parameters used for 

uniqueness test.  However, the final values of dispersivity, source timing, and mass are 

similar suggesting the non-uniqueness is not extreme.  Estimates of the mean and 

variance are also similar, but are more uncertain as reflected by the larger confidence 

intervals. The starting parameter values for each run, final estimated parameter values, 

and the SOSWR with respect to each uniqueness-testing regression are listed in Table 

5.4.  Results of the uniqueness test are depicted in Figures 5.11, 5.12, and 5.13 showing 

final parameter values and the ir upper and lower 95% linear confidence intervals. 
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Table 5.4: Initial and final parameter values for three regressions.  Note that shaded cells 
represent parameters that were omitted during regression due to reaching the upper bound 
for variance in the code that calculates the source function. 
 

Parameters 
Initial 
Values 
Run 1 

Final 
Initial 
Values 
Run 2 

Final 
Initial 
Values 
Run 3 

Final 

Dispersivity 100 316 600 327 500 314 
Source Timing 15 28.1 19.5 28.0 30 28.2 
Mass 15000 18700 30000 19090 17904 18680 
Mean 5 9 20 13 10 9 
Variance 10 60 30 60 15 60 

SOSWR   166.8   166.7   166.8 
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Figure 5.11: Optimal parameter values and their upper and lower 95% confidence 
intervals for three regression runs.  Diamonds are the optimal values and error bars 
represent the upper and lower linear 95% confidence intervals.  Ideally all diamonds 
should fall within half of the adjacent point’s error bars. 



 81 

 

Figure 5.12: Optimal parameter values and their upper and lower 95% confidence 
intervals for three regression runs.  Diamonds are the optimal values and error bars 
represent the upper and lower linear 95% confidence intervals.  Ideally all diamonds 
should fall within half of the adjacent point’s error bars. 
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Figure 5.13: Optimal parameter values and their upper and lower 95% confidence 
intervals for three regression runs.  Diamonds are the optimal values and error bars 
represent the upper and lower linear 95% confidence intervals.  Ideally all diamonds 
should fall within half of the adjacent point’s error bars. 
 
 
 The overlapping confidence intervals suggest that the parameters can be independently 

estimated (i.e., there is a unique solution for the regression).  However, the SOSWR is 

approximately 160 for many sets of parameter values making it difficult to obtain 

convergence of the regression, which can be seen when depicting the time and mass 

coordinates of the centroids of the source distributions with their associated SOSWR 

values (Figure 5.14).  Clearly the objective function is flat, likely due to large error in the 

observations or correlation between multiple parameters.  The SOSWR surface may have 

a global minimum that was not found by the regression.  However, derivative based 

parameter estimation techniques that invoke perturbation techniques (such as 
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UCODE_2005, MODFLOW-PES, and PEST), may not be robust enough to find the 

minimum.  The global minimum may occur for an earlier time and a smaller mass  

(Figure 5.15). 

 

 
 

 
Figure 5.14: Variation of the time and mass coordinates of centroid of the source 
distributions with respect to SOSWR values for the three regressions using the modified 
truncated lognormal function. 
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Figure 5.15: Concept of a flat SOSWR surface containing a global minimum. 
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Model Weighting 
 
 Although the results suggest the source distribution is yet to be determined, for the 

sake of this thesis and to illustrate the technique, model averaging is undertaken. 

 Multi-model averaging integrates results from alternative models of a system based on 

weights that reflect relative information content of models in a set.  Multi-model 

averaging provides a more realistic measure of precision than evaluation of any one 

model.  Here we use the enhanced Akaike’s Information Criterion (AICc) for weighting 

models which reflects information lost when the full truth is approximated by a given 

model: 







−−
+

++=
1
)1(2

2)log( 2

kn
kk

knAICc σ             (5.3) 

 
where 2σ  is the estimated residual variance (the quotient of the sum of squared weighted 

residuals and the number of observations, SOSWR/n), n  is the number of observations, 

and k is the number of estimated parameters for the model (plus one because 2σ  is 

considered to be estimated).  AICc is based on Kullback-Leibler (KL) information which 

provides a rigorous foundation for model inference that is simple to compute, easy to 

interpret, and selects parsimonious models. 

 Delta values, minAICcAICcii −=∆ , describe information loss on a log scale (Poeter 

and Anderson, 2005) and are used to calculate model weights that sum to one for a given 
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set of models, where AICcmin is the minimum AICc value of all the models in the set.  

The weight of evidence in favor of each model in the set is: 

 

∑
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∆−

= R

j

j
i

i

w

1

5.0

5.0

exp

exp
                  (5.4) 

 
where wi is the weight of evidence in favor of model i being the best model in the sense 

of minimum KL information loss and R is the set of all models (Poeter and Anderson, 

2005). 

 
 

Model Averaging Results 
 
 Weights for each model are dependent on the number of observations, number of 

estimated parameters, and SOSWR.  For the set of alternative conceptual models 

considered, the model weights indicate the truncated lognormal function is most 

representative of the source history (Table 5.5).  The final mass distributions through 

time for each conceptual model are depicted in Figure 5.16.  
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Table 5.5: Model weights for alternative source functions. 

Source Function n k SOSWR AICc 
Model 
Weight 

Truncated Lognormal 276 3 167.3 -53.9 0.94 
Stake Holder 276 2 178.2 -48.4 0.058 
Truncated Normal 276 5 179.4 -41.4 0.0018 
Step Function 276 3 307.9 19.2 1.2x10-16 

 
 
 
 

 

Figure 5.16: Contaminant source functions represent ing time versus mass in lbs/yr over a 
sixty year timeframe from 1945 to 2004.  Blue lines represent the upper 95% confidence 
interval and red lines represent the lower interval. 
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 The model weights and their mass distributions are used to generate the average mass 

input estimated by all four conceptual models.  To do this, the mass for each year of each 

conceptual model is multiplied by its respective weight and then summed.  The modified 

truncated lognormal function has a substantially higher weight than the alternatives, 

consequently, the average distribution looks much like that distribution (Figure 5.17).  

Given this limited set of models and the uncertainty described above, the time when most 

of the mass reached the ground-water table cannot be determined at this time. 

 

 
 
Figure 5.17: Average mass distribution derived from model averaging the conceptual 
models.  Blue and red lines are the upper and lower averaged 95% confidence intervals. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 
 
 

Conclusions  
 
 When calibrating a ground-water contaminant transport model, it is common practice 

to substitute fabricated values for censored data, e.g., detection limit, one-half the 

detection limit, or zero.  However, we only know that the value is less than the detection 

limit. This is taken into account by the censored-residual approach, which is shown to 

produce more representative models.  For instance, when using the censored-residual 

approach the synthetic examples show a better fit to field observations and estimated 

parameter values are closer to true values used to generate the synthetic models.  Given 

that the censored-residual approach resulted in the best fit to synthetic data and more 

representative parameter values for the synthetic test cases, we infer that it produces the 

most representative parameter values for field cases as well. 

 As mentioned previously, models cannot entirely represent all the subtleties of 

ground-water system, as they are only mere approximations of nature.  For instance, 

reasonable alternative models of a system can yield similar calibrations and yet provide 

substantially different results.  Evaluation of alternative models indicates uncertainty 

associated with one model is small compared with the uncertainty reflected by multiple 

conceptual models.  Hence, various conceptual models which represent possible 
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conditions/scenarios need to be developed, calibrated, used to make predictions, and their 

average results reported. 

A modified truncated lognormal source distribution is most representative of the TCE 

plume in Bunker Hill basin.  However, only four source functions are considered and the 

modified truncated lognormal model is non-unique either due to large error in 

observations, correlation of parameters, and/or an inadequate conceptual model.  Given 

this limited set of models and the non-unique solution of the most representative model, 

further work is needed to determine the distribution of mass arrival at the water table. 

 
 

Future Work 
 
 Because the timing of mass arrival at the water table cannot be determined from this 

analysis, several future tasks are appropriate.  Calibration of the flow model should be 

reconsidered to assure a representative flow field.  Non-uniqueness of the flow model 

should also be evaluated.  Next, only four source functions are evaluated, which may not 

provide adequate flexibility in representing the source.  Hence, more conceptual models 

of the source should be developed.  Perhaps evaluation of concentration time-series in 

observation wells would provide insight on alternative distributions.  The concentration 

observations need to be reanalyzed to reevaluate their accuracy.  It may be appropriate to 

use similar weights for censored and uncensored observations, as this may better 

represent the spatial distribution of the plume.  In addition, it may be useful to remove the 
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concentration observations derived from purveyor wells, as observations from monitor 

wells may produce a more representative data set.  Lastly, alternative parameter 

estimation schemes can also be invoked such as genetic algorithms, shuffled complex 

evolution, function approximation, or other methods. 
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APPENDIX A: SOURCE CODES FOR THE CONCEPTUAL MODELS 
 
 
 Each alternative model described in Chapter 5 is coded using the FORTRAN 90 

programming language and is located in their respective directories on the compact disk 

included on the back cover of this report, as are their input and output files. 

 

Truncated Normal Distribution 
 
 The truncated normal distribution program is NormalDist.f90.  This program outputs 

two files: 1) a check file that lists the year, mass for that year, and the summation of the 

total mass input for the entire simulation; and 2) an MT3DMS source-sink mixing 

package input file that is used by the transport program to simulate the TCE migration.  

The input file, NormDist.in, controls the parameters of the distribution (Figure A.1).  The 

estimated parameters in this study include mass, mean, variance, and shift.  The input 

item, shift, controls the amount of time that mass can be entered into the aquifer. 

 
1     SOURCE LOCATIONS 
30000.0D0  MASS 
10.0D0   SHIFT 
60     Number of MODFLOW Stress Periods 
20.D0   Mean 
30.D0   Variance 
20   1.00   Number of contaminant stress periods that mass will be injected     
     into the aquifer, followed by fractional mass in source period. 
 
Figure A.1: Input file for the truncated normal distribution code NormalDist.f90.  Only 
the numbers on the left are needed by the code, while the text just explains the purpose of 
the number. 
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Truncated Lognormal Distribution 
 
 The truncated lognormal distribution program is LogNormal.f90.  This program 

produces output similar to the truncated normal distribution program.  The input file, 

LogNorm.in, has the same structure as NormalDist.in (Figure A.1).  However, the final 

input item (fractional mass in source period) is not used by the truncated lognormal 

program. 

 
 

Step Function 
 
 The step function program is srcdis.f90.  This program produces output similar to the 

truncated normal distribution program.  The input file, srcdis.in, controls the parameters 

of the distribution (Figure A.2).  The estimated parameters for this study are the 

individual mass inputs and the shift value.  The first input value shifts the time when 

mass begins to enter the ground water.  The second input value represents the number of 

MODFLOW stress periods, and the remaining inputs are the respective duration (in 

years) and magnitudes for each period. 

 
10.D0 SHIFT 
60   Number of MODFLOW Stress Periods 
13   MASS_1 13 Years of mass input  Mass of pulse 1 
3    MASS_2 3 Years of mass input  Mass of pulse 2 
5    MASS_3 5 Years of mass input  Mass of pulse 3 
 
Figure A.2: Example input file for the step function code srcdis.f90 
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Stake Holder Distribution 
 
 The stake holder distribution is produced by the program StakeHolder.f90, which has 

the same output format as mentioned previously.  The input file, StakeHolder.in, controls 

the parameters of the distribution (Figure A.3).  The first, second, and third input values 

control the amount of mass, the time when mass is first introduced to the water table, and 

the number of MODFLOW stress periods.  The remaining input values are the mass 

fraction for each period.  Each fraction is multiplied by the original total mass to calculate 

the mass input for each stress period. 

 
17904.D0       Original Total Mass in aquifer 
10.0D0         SHIFT 
60              Number of MODFLOW Stress Periods 
0.00065524    MASS Percent for period 1  
0.003069283   MASS Percent for period 2  
0.003069283   MASS Percent for period 3  
0.003069283   MASS Percent for period 4  
0.003069283   MASS Percent for period 5  
0.019208884   MASS Percent for period 6  
0.035520916   MASS Percent for period 7  
0.041762941   MASS Percent for period 8  
0.048384316   MASS Percent for period 9  
0.087526296   MASS Percent for period 10 
0.087526296   MASS Percent for period 11 
0.087526296   MASS Percent for period 12 
0.087526296   MASS Percent for period 13 
0.087526296   MASS Percent for period 14 
0.087526296   MASS Percent for period 15 
0.087526296   MASS Percent for period 16 
0.087526296   MASS Percent for period 17 
0.076249267   MASS Percent for period 18 
0.047453185   MASS Percent for period 19 
0.018277753   MASS Percent for period 20 
 

Figure A.3: Example input file for the stakeholder distribution code InitEstimate.f90 
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APPENDIX B: CONTENTS OF THE COMPACT DISK 
 
 
 The compact disk included with this thesis includes all files and codes required to 

reproduce the work presented herein. 

 

 
 
The list above represents the directory structure of the CD contents.  Each directory will 

be discussed individually, as well as, the execution methodology to run the needed 

applications for model evaluation/calibration.  To run the applications from the provided 

CD without any changes, the directories on the CD have to remain in the same structure 

when copied, i.e., copy the ThesisCD contents to the C drive of the respective computer.  

If the desired location is not C:\ThesisCD, then the paths for each batch file will have to 

be changed.  This will be discussed in the explanations of batch files below. 
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Calibration_DanskinFlowModel Directory 
 
 The Calibration_DanskinFlowModel directory contains the Danskin (2006) original 

flow model in MODFLOW-2000 format and the input, batch, executable, and output files 

used and generated during the model evaluation.  The batch files used to run the 

applications for the original Danskin model evaluation are RunApps.bat as follows: 

@echo off 
:: Change the ungaged recharge 
echo *** UPDATING THE UNGAGED RECHAGE *** 
C:\ThesisCD\BIN\Factor.exe 
 
echo *** RUNNING DANSKIN'S SPECIALIZED MODFLOW-2000 *** 
C:\ThesisCD\BIN\WesMF2K.exe Danskin.nam 
 
echo *** CALCULATE THE STREAMFLOW LEAKAGE *** 
find "STREAM LEAKAGE =" 2k.lst > StreamLeak.out 
 
:: calculate the in-out stream flow and convert to ac-ft/yr 
C:\ThesisCD\BIN\StrBud.exe 
 
:: Get the updated pathline information for the y direction only 
echo *** RUNNING MODPATH *** 
C:\ThesisCD\BIN\ModpathV4.exe danskin.rsp 
 
:: delete unneeded files 
del fort.* 
 
 
and UCODE.bat for the regression and residual analysis as follows: 
 
@echo off 
:: Run UCODE 
C:\ThesisCD\BIN\Ucode_2005.exe Danskin.in Danskin 
 
:: Run residual analysis 
C:\ThesisCD\BIN\residual_analysis.exe Danskin 
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Running the Danskin Model Evaluation 
 
 To run the Danskin model evaluation using the provided batch file either click on the 

batch file in Microsoft Explorer or open a command prompt in the 

C:\ThesisCD\Calibration_DanskinFlowModel directory and type the name of the batch 

file.  For example: 

 cd C:\ThesisCD\Calibration_DanskinFlowModel  

 UCODE.bat, or RunApps.bat 

 
 If the desired location on the respective computer is not C:\ThesisCD then the paths in 

each batch file will have to be adjusted accordingly.  For example, the paths in batch files 

are the map to locations of each application as follows: C:\ThesisCD\BIN\Factor.exe.  

This line from RunApps.bat above locates the application Factore.exe via the path, 

which is the highlighted portion of the line.  If the location on the respective computer is 

different this path must be updated to have successful completion of the batch files. 

 
 Upon the execution of the batch files, applications will be invoked to perform the 

desired analysis.  For instance, if UCODE.bat is activated, it will use the 

UCODE_2005.exe executable in the BIN (short for binary) directory.  UCODE will read 

the main UCODE_2005 input file within the current directory, Danskin.in, and begin to 

perform the flow model evaluation (regression analysis, sensitivity analysis, or forward 

mode) as prescribed in the input file.  Danskin.in will invoke RunApps.bat where each 
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application will be read in order as they appear.  For instance the execution of 

RunApps.bat will occur as follows: 

1st) The application Factor.exe will be executed.  Factor.exe controls the multiplication  

  factor on the northeastern mountain front recharge boundary conditions.  The input  

  files are: Complete.well and factor.in.  Complete.well is a standard MODFLOW- 

  2000 well package file that depicts the specified flux stresses in the basin     

  (pumping, recharge).  The file factor.in contains the multiplication factor that    

  adjusts the  northeastern mountain front recharge that is used by UCODE.  Upon  

  completion the output file is FinalStress.well. 

2nd) The application WesMF2K.exe, which is the reconstruction of Danskin’s original  

  flow model from MODFLOW 96 to MODFLOW-2000, is activated.       

  WesMF2K.exe will use the previously generated file FinalStress.well that contains  

  the portions of the northeastern mountain front recharge adjusted by a      

  multiplication factor as the new well package file depicting the specified fluxes. 

3rd) The internal command prompt command, find, is used to extract lines that contain  

  instances of the text string “STREAM LEAKAGE” from the main output file   

  generated from MODFLOW, 2k.lst.  The file StreamLeak.out will be generated   

  from the find command listing the stream leakage values for each stress period the  

  flow model ran. 

4th) The application StrBud.exe will be executed.  This application uses the      

  StreamLeak.out file generated in the 3rd step as input and controls the updating of  
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  the stream flow observations to be used during regression.  The output file is    

  StreamBudget.out which lists the year and total stream flow for that year in ac-ft/yr. 

5th) Particle tracking through the aquifer is started with the application ModpathV4.exe.  

  This executable is standard MODPATH, but recompiled to accept more     

  observations than allowed with the default version.  Particle tracking is used to   

  simulate the path a particle will move from the supposed industrial site (source of  

  contamination) through the aquifer for each stress period in the flow model.  This  

  information is used by UCODE to calculate residuals with respect to observed   

  field plume locations and simulated values of the plume path. 

6th) The sixth and last command is only used to remove unneeded files from the    

  directory after all the applications are completed. 

 If UCODE.bat is invoked first, the execution of RunApps.bat would either cycle 

through parameter-estimation, sensitivity-analysis, or one fo rward mode iteration 

depending on the controls of the UCODE input file.  After the completion of 

UCODE_2005.exe within UCODE.bat, residual analysis will be activated.  

Residual_Analysis.exe is a post-regression application used to perform two functions: 1) 

test the weighted residuals for acceptable deviations from being independent and 

normally distributed, and 2) calculation of statistics that can be used to identify 

observations that are influential in the regression.  To have proper execution of the 

residual analysis code, UCODE_2005 has to be executed in either sensitivity-analysis or 
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parameter-estimation mode and the DataExchange keyword needs to be set to yes in the 

main UCODE_2005 input file.  For further details see the UCODE_2005 documentation. 

 
 If RunApps.bat is invoked first, the 6 step cycle will run once.  The control of whether 

or not to use an application can be accomplished using comments in the batch file, or the 

respective application input file.  For instance, if the user decides not to run residual 

analysis, comment the respective line in the batch file by placing two colons in front of 

the line.  For example: 

 
:: This is a comment because of the :: and the batch file will ignore this line! 
:: C:\ThesisCD\BIN\residual_analysis.exe Danskin 
 

Input-Output File Explanation 
 
 The Calibration_DanskinFlowModel directory contains the needed input files and 

output files generated upon the completion of the applications discussed prior.  The 

respective files are discussed as follows: 

 
UCODE_2005 input files: 

• Danksin.in: main input file for UCODE_2005 which contains the specific inputs 

required to control UCODE_2005.  Danskin.in is created with data input blocks 

specific to UCODE_2005 that may read data from other files or perform a specific 

purpose to UCODE_2005 execution. 
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• File extensions of the form, .tpl: these files are template files which are used to 

construct the model input files used by applications that UCODE_2005 runs.  For 

instance, 2k.lpf.tpl is used by UCODE_2005 to produce 2k.lpf, an input file required 

to run MODFLOW-2000. 

• File extensions of the form, .ins: these files are instruction files used by 

UCODE_2005 to extract and read values from output files generated by the 

applications executed by UCODE_2005.  For example, after the completion of 

MODFLOW-2000 the simulated heads for the observation well locations are 

produced.  UCODE uses Heads.ins to read the simulated heads produced by 

MODFLOW-2000 for calculating the residuals. 

• File extensions of the form, .ddt: these files represent the observation values used to 

calculate residuals during the execution of UCODE_2005. 

 
UCODE_2005 output files: 

• Danskin.#uout: main output file produced after the execution of UCODE_2005.  This 

file contains an echo of the input data and selected results with respect to the mode 

that UCODE_2005 was executed in. 

• Data exchange files produced by UCODE_2005: all files with the form Danskin._ext, 

where ext is extension.  For instance, Danskin._ws contains the simulated equivalents 

and weighted residuals for graphical purposes. 
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• Output and data exchange files produced by residual analysis: this post processor has 

the following associated files: 1) Danskin.#resan which contains the summary of the 

residual analysis run, 2) Danskin_.rd containing the uncorrelated normal random 

residuals, and 3) Danskin_.rg containing the correlated normal random numbers. 

 
MODFLOW-2000 input files: 

• Danskin.nam: main input file controlling the execution of MODFLOW-2000 

containing the names of the input files used and the output files to be created. 

• 2k.lst: main output file produced after the execution of MODFLOW-2000.  This file 

contains an echo of the input data and selected results with respect to the mode that 

MODFLOW-2000 was executed in.  

• Data exchange files produced by MODFLOW-2000: some files will have the same 

form as UCODE_2005 extensions such as ._ext.  However, the difference will be the 

initial name of the file.  For example, RedCalib._ext, where RedCalib._os contains 

the observed and simulated head values generated from executing MODFLOW-

2000. 
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MODPATH input files: 

• Danskin.mpn: main input file controlling the execution of MODPATH particle 

tracking containing the names of the input files used and the output files to be created. 

• summary.pth: main output file produced after the execution of MODPATH.  This file 

contains an echo of the input data and selected results with respect to the MODPATH 

execution. 

• Data exchange files produced by MODPATH: 1) Danskin.cbf which is cell by cell 

flux values saved for each stress period used to calculate the particle tracks, 2) 

endpoint file, which contains the final location of the particle in the aquifer, and 3) 

timeseries file, which contains the simulated spatial and temporal path that the 

particle moved through the aquifer.  The timeseries file is used by UCODE_2005 to 

calculate residuals of the plume observation locations. 
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Calibration_ModifiedFlowModel 
 
 The Calibration_ModifiedFlowModel directory contains the modified flow model in 

MODFLOW-2000 format and the input, batch, executable, and output files used and 

generated during the model evaluation.  The batch files used to run the applications for 

the modified model calibration are RunApps.bat as follows: 

 
@echo off 
:: Change the ungaged recharge 
echo *** UPDATING THE Northeastern  Mountain Front Recharge *** 
C:\ThesisCD\BIN\NEMF.exe 
 
echo *** RUNNING MODFLOW *** 
C:\ThesisCD\BIN\mf2k.exe Danskin.nam 
 
echo *** CALCULATE THE STREAMFLOW LEAKAGE *** 
find "STREAM LEAKAGE =" 2k.lst > StreamLeak.out 
 
::calculate the in-out stream flow and convert to ac-ft/yr 
C:\ThesisCD\BIN\StrBud.exe 
 
:: Get the updated pathline information for the y direction only 
echo *** RUNNING MODPATH *** 
C:\ThesisCD\BIN\ModpathV4.exe danskin.rsp 
 
:: delete some unneeded files 
del fort.* 
 
and UCODE.bat for the regression and residual analysis as before: 
 
@echo off 
:: Run UCODE 
C:\ThesisCD\BIN\Ucode_2005.exe Danskin.in Danskin 
 
:: Run residual analysis 
C:\ThesisCD\BIN\residual_analysis.exe Danskin 
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Running the Modified Model Evaluation 
 
 To run the modified model, refer to the same procedure as discussed previously.  

Upon the execution of the batch files, applications will be invoked as discussed above to 

perform the desired analysis.  The execution of RunApps.bat for the modified flow model 

is similar as above, with two newer applications as follows: 

1st) The application NEMF.exe will be executed controlling the multiplication factor on 

   the northeastern mountain front recharge, with respect to the updated boundary  

   conditions of the modified flow model.  The input files are:        

   Pumpage_NoCN_CR.well and UNDfactor.in.  Pumpage_NoCN_NR is the   

   updated well file that has the specified flux values of the Colton-Narrows and  

   the Crafton-Redlands Fault removed on the southeastern boundary allowing   

   the replacement with the general head boundary.  The output file is 

FinalStress.well   which is used as the well package in the modified flow model. 

2nd) The application mf2k.exe, which is standard MODFLOW-2000, is activated.    

  mf2k.exe will use the previously generated file FinalStress.well that contains the  

  portions of the northeastern mountain front recharge adjusted by a multiplication  

  factor as the new well package file depicting the specified fluxes. 

3rd), 4th), 5th), and 6th) steps are the same as shown above. 
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Input-Output File Explanation 
 
 The Calibration_ModifiedFlowModel directory contains the same needed input files 

and output files previously discussed.  See the above description for details on the 

respective UCODE_2005, MODFLOW-2000, and MODPATH files. 

LognormalDistribution Directory 
 
 The LognormalDistribution directory contains two subdirectories: calibration and 

source.  The calibration subdirectory contains the input, batch, executable, and output 

files used and generated during the model calibration/evaluation.  The source 

subdirectory contains the source code developed in Fortran90, the input file, and a copy 

of the binary executable.  The batch files used to run the applications for the truncated 

lognormal distribution are: RunApps.bat and UCODE.bat as follows: 

@echo off 
echo **Updating the Truncated Lognormal Distribution Contamination Source ** 
LogNorm.exe 
 
:: Make the MT3D run >nul removes the screen output 
echo *** RUNNING MT3D *** 
C:\ThesisCD\BIN\\mt3d_big.exe RedMT3D.nam > nul 
 
:: delete some uneeded files 
del fort.*, MT3D001S.UCN, MT3D001.OBS 
 
@echo off 
:: Run UCODE 
C:\ThesisCD\BIN\Ucode_2005.exe ConvertedDanskin.in Danskin 
 
:: Run residual analysis 
C:\ThesisCD\BIN\residual_analysis.exe Danskin 
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Running the Truncated Lognormal Calibration 
 
 To run the truncated lognormal model calibration, follow the same procedure as above 

with respect to the UCODE.bat and RunApps.bat batch files. 

 
 Upon the execution of the batch files, applications will be invoked to perform the 

desired analysis.  RunApps.bat will execute as follows: 

1st) The application LogNorm.exe will be executed (Figure A.1).  Two output files   

 are produced: 1) MASSCHECK.OUT listing the year, mass for that year, and a    

 summation of the total mass of the distribution, and 2) BLD91_LN.ssm, which is a   

 sink-source mixing file used by the transport model to simulate the TCE source. 

2nd) The MT3DMS transport application mt3d_big.exe is invoked.  This executable is  

  exactly the same as standard MT3DMS, but only recompiled to accept a larger   

  amount of concentration observations and simulates the transport of TCE within   

  ground water using the previously created BLD91_LN.ssm file. 

 
 If UCODE.bat is invoked first, as discussed above, the execution of RunApps.bat 

would either cycle through parameter-estimation, sensitivity-analysis, or one forward 

mode iteration depending on the controls of the UCODE input file. 
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Input-Output File Explanation 
 
 The calibration subdirectory of the LognormalDistribution directory contains the 

needed input files and output files generated upon the completion of the applications 

discussed prior.  Note, the input-output file explanation remains the same for each of the 

alternative conceptual transport models 

 
UCODE_2005 input files: 

• ConvetedDanksin.in: main input file for UCODE_2005. 

• File extensions of the form, .tpl: these are template files discussed above 

• File extensions of the form, .ins: these are instruction files discussed above. 

• File extensions of the form, .ddt: these are observation values discussed above. 

UCODE_2005 output files: (discussed above) 

MT3DMS input files: 

• RedMT3D.nam: main input file controlling the execution of MT3DMS.  Contains 

the names of the input files used and the output files to be created. 

• Red.m3d: main output file produced after the execution of MT3DMS.  This file 

contains an echo of the input data and selected results with respect to the mode that 

MT3DMS was executed in. 

• Data exchange files produced by MT3DMS: the main file for post-processing is 

MT3D001.UCN which is a binary output file containing the simulated concentration 

data for each stress period. 
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Post-Processing 
 
 Note: post processing remains the same for each of the alternative conceptual transport 

models.  Two batch files, Grid.bat and FileConvert.bat, are included tha t are used for post 

processing after the transport simulation is complete to generate contour plume maps: 

 
@echo off 
rem Batch file to create surfer grids of Redlands TCE output 
rem delete unwanted files (rem is another form of commenting in a batch file) 
del MT3D001S.UCN MT3D001S.OBS 
C:\ThesisCD\BIN\pm.exe 
 
 
@echo off 
:: Convert the file from lbs/cu.ft to ppb 
C:\ThesisCD\BIN\convert.exe 
 
 
 The batch file, Grid.bat is used to remove unneeded files and invoke a post processing 

application that is included with MT3DMS for contouring concentration data, 

PostMT3D|MOFLOW, or pm.exe.  For this project pm.exe reads both the binary file 

MT3D001.UCN and the grid configuration file Red.cnf produced by MT3DMS. 

 
To execute Grid.bat properly the following must be done sequentially: 

1st) Type Grid.bat in the command prompt, or double click within the directory and   

  follow the input instructions accordingly. 

2nd) The program will ask for the name of the unformatted concentration file, type   

  MT3D001.UCN 
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3rd) The program will ask for the style of the unformatted file, type 2 for binary 

4th) The program will ask for the model grid configuration file, type Red.cnf 

5th) The program will ask if you wish to offset the coordinates, type n 

6th) The program will ask for the total elapsed time at which a contour map is needed,  

  type -1 for the final step.  The option for other times is also allowed. 

7th) The program will ask for the starting column, row, and layer, type 1,1,1 

8th) The program will ask for the ending column, row, and layer, type 184,118,1 

9th) The program will ask for a name to be given to the file that is about to be     

  generated.  For this response type a desired name.  However, add the extension   

  with the name as pm.exe does not do this, i.e., gridfile.grd.  Throughout this   

 work surfer is used for contouring purposes and to make the final post processing   

 step complete you must use the .grd format extension. 

10th) The program asks for the format of the data file, type 1 for surfer grid format. 

 

 The batch file, FileConvert.bat is used to recreate the surfer grid file produced from 

Grid.bat such that the final surfer grid file will have concentrations in parts per billion 

(ppb) instead of lbs/ft3.  FileConvert.bat invokes the application convert.exe.  The input 

file is requested upon execution and is with respect to the chosen file name after the 

completion of Grid.bat.  The output file name is also requested and will be in the form: 

RequestedFileName .grd, where RequestedFileName is selected by the user.  The user 

does not have to include the .grd extension as it is automatically added.
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NormalDistribution Directory 

 
 The NormalDistribution directory contains the same directory structure and 

descriptions as the LognormalDistribution.  The batch files used to run the applications 

for the truncated normal distribution are the same except that RunApps.bat has a different 

executable to produce the truncated normal distribution: 

@echo off 
echo **Updating the Truncated Normal Distribution Contamination Source ** 
NormDist.exe 
 
:: Make the MT3D run >nul removes the screen output 
echo *** RUNNING MT3D *** 
C:\ThesisCD\BIN\\mt3d_big.exe RedMT3D.nam > nul 
 
:: delete some uneeded files 
del fort.*, MT3D001S.UCN, MT3D001.OBS 
 

Running the Truncated Normal Calibration 
 
 To run the truncated lognormal model calibration, follow the same procedure as above 

with respect to the UCODE.bat and RunApps.bat batch files. 

 
 Upon the execution of the batch files, applications will be invoked to perform the 

desired analysis.  RunApps.bat will execute as described above: 

1st) The application NormDist.exe will be executed (Figure A.1).  Two output files   

 are produced: 1) MASSCHECK.OUT described above, and 2) BLD91_ND.ssm    

 to simulate a truncated normal TCE source. 

2nd) Same as above, but using the previously created BLD91_ND.ssm file.
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StakeHolder Directory 

 
 The StakeHolder directory contains the same directory structure and descriptions as 

the alternative source function directories.  The batch files used to run the applications for 

the stake holder function are the same except that RunApps.bat has a different executable 

to produce the stake holder distribution: 

@echo off 
echo *** Updating Stake Holder Mass Distribution *** 
StakeHolder.exe 
 
:: Make the MT3D run 
echo *** RUNNING MT3D *** 
C:\ThesisCD\BIN\mt3d_big.exe RedMT3D.nam > nul 
 
:: delete some uneeded files 
del MT3D001.OBS 
 

Running the Stake Holder Calibration 
 
 To run the stake holder model calibration, follow the same procedure as above with 

respect to the UCODE.bat and RunApps.bat batch files. 

 
 Upon the execution of the batch files, applications will be invoked to perform the 

desired analysis.  RunApps.bat will execute as described above: 

1st) The application StakeHolder.exe will be executed (Figure A.3).  Two output    

 files are produced: 1) MASSCHECK.OUT described above, and 2)        

 BLD91_SH.ssm to  simulate the stake holder distribution of a TCE source. 

2nd) Same as above, but using the previously created BLD91_SH.ssm file. 
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StepFunction Directory 
 
 The StepFunction directory contains the same directory structure and descriptions as 

the other alternative source function directories.  The batch files used to run the 

applications for the step function are the same except that RunApps.bat has a different 

executable to produce the step function distribution: 

 
@echo off 
echo *** Updating the Step Function *** 
srcdis.exe 
 
:: Make the MT3D run 
echo *** RUNNING MT3D *** 
C:\ThesisCD\BIN\mt3d_big.exe RedMT3D.nam > nul 
 
:: delete some uneeded files 
del MT3D001S.UCN, MT3D001.OBS 
 

Running the Step Funciton Calibration 
 
 To run the step function model calibration, follow the same procedure as above with 

respect to the UCODE.bat and RunApps.bat batch files. 

 
 Upon the execution of the batch files, applications will be invoked to perform the 

desired analysis.  RunApps.bat will execute as described above: 

1st) The application srcdis.exe will be executed (Figure A.2).  Two output files are   

 produced: 1) MASSCHECK.OUT described above, and 2) BLD91_cont.ssm to    

 simulate the step function distribution of a TCE source. 

2nd) Same as above, but using the previously created BLD91_cont.ssm file. 


